Aktuelles

The MOAT project ("micro-organisms and turbulence") has just been awarded a massive amount of computational resources at the Stuttgart super-computing center HLRS through the highly-competitive selection process coordinated by the Gauss Center for Supercomputing (GCS).
The simulations will consider the fate of bacteria in turbulent open channel flow over a realistic sediment bed, including a faithful representation of the dynamics of suspended particles and of additional scalar fields.
A link to the result of the 20th GCS call for large-scale projects can be found here.
More information on the science behind the MOAT project can be found here.

This project has investigated the problem of sediment transport and subaqueous pattern formation by means of high-fidelity direct numerical simulations which resolve all the relevant scales of the flow and the sediment bed. In order to realistically capture the phenomenon, sufficiently large computational domains with up to several billion grid nodes are adopted, while the sediment bed is represented by up to a million mobile spherical particles. The study provides a unique set of spatially and temporally resolved information on the flow field and the motion of individual particles which make up the sediment bed, providing novel insight into the different mechanisms involved in the processes of sediment pattern formation.
More
Open channel flow can be considered as a convenient "laboratory" for investigating the physics of the flow in rivers. One open questions in this field is related to the influence of a rough boundary (i.e. the sediment bed) upon the hydraulic properties, which to date is still unsatisfactorily modelled by common engineering-type formulae. The present project aims to provide the basis for enhanced models by generating high-fidelity data of shallow flow over a bed roughened with spherical elements in the fully rough regime. In particular, the influence of the roughness Reynolds number and of the spatial roughness arrangement upon the turbulent channel flow structure is being studied.
More
MA - Laboratory investigation of flow and chemical behavior of woodchips to better understand performance of denitrifying bioreactors
MA - Flow through emergent and low-submergence vegetation patches
MA - Aufbau eines Messsystems zur Bestimmung der Fahrspur von Fahrradfahrern
MA - Bestimmung des Widerstandsbeiwerts von Radfahrern bei seitlicher Anströmung