Home | english  | Impressum | Datenschutz | Sitemap | KIT

Institut für Hydromechanik

Postanschrift:
KIT Campus Süd
Institut für Hydromechanik
Kaiserstr.12
D-76131 Karlsruhe

Besuchsanschrift:
KIT Campus Süd
Institut für Hydromechanik
Otto-Ammann-Platz 1
Gebäude Nr. 10.81  

Lageplan/Anfahrt
 
Telefon:
+49 721 608-42200

Fax:
+49 721 608-42202

E-Mail: infoUxx5∂ifh kit edu

Bei speziellen Fragen
zu Studium und Lehre:
lehreNcb7∂ifh kit edu (Lehrstuhl)

Bei Fragen und Kommentaren
bzgl. der Homepage:
infoPvw1∂ifh kit edu

Willkommen am Institut für Hydromechanik (IfH)

Logos

 

Aktuelles

Folgende BACHELOR- und MASTERARBEITEN sind derzeit bei uns ausgeschrieben:

MA - Flow through emergent and low-submergence vegetation patches

MA - Aufbau eines Messsystems zur Bestimmung der Fahrspur von Fahrradfahrern

MA - Bestimmung des Widerstandsbeiwerts von Radfahrern bei seitlicher Anströmung

Weitere Informationen

HiWi gesucht, ab sofort!

Zur Unterstützung einer Feldmesskampagne auf dem Gelände KIT Campus Nord im Zeitraum Mitte September bis Ende Oktober 2018.

In der Kampagne werden experimentelle Untersuchungen zu verkehrs-induzierten Druck-/Sogkräften auf Fahrradfahrer durchgeführt.

Mehr Informationen & Kontakt

 
gaus2
Direct Numerical Simulation of the Formation of Subaqueous Sediment Patterns: Evolution Beyond the Initial Formation

This project has investigated the problem of sediment transport and subaqueous pattern formation by means of high-fidelity direct numerical simulations which resolve all the relevant scales of the flow and the sediment bed. In order to realistically capture the phenomenon, sufficiently large computational domains with up to several billion grid nodes are adopted, while the sediment bed is represented by up to a million mobile spherical particles. The study provides a unique set of spatially and temporally resolved information on the flow field and the motion of individual particles which make up the sediment bed, providing novel insight into the different mechanisms involved in the processes of sediment pattern formation.

More
gaus3
Direct Numerical Simulation of Fully-Rough Open-Channel Flow Over Spherical Roughness Elements

Open channel flow can be considered as a convenient "laboratory" for investigating the physics of the flow in rivers. One open questions in this field is related to the influence of a rough boundary (i.e. the sediment bed) upon the hydraulic properties, which to date is still unsatisfactorily modelled by common engineering-type formulae. The present project aims to provide the basis for enhanced models by generating high-fidelity data of shallow flow over a bed roughened with spherical elements in the fully rough regime. In particular, the influence of the roughness Reynolds number and of the spatial roughness arrangement upon the turbulent channel flow structure is being studied.

More