Home | english  | Impressum | Datenschutz | Sitemap | KIT

Institut für Hydromechanik

Postanschrift:
KIT Campus Süd
Institut für Hydromechanik
Kaiserstr.12
D-76131 Karlsruhe

Besuchsanschrift:
KIT Campus Süd
Institut für Hydromechanik
Otto-Ammann-Platz 1
Gebäude Nr. 10.81  

Lageplan/Anfahrt
 
Telefon:
+49 721 608-42200

Fax:
+49 721 608-42202

E-Mail: infoJwd4∂ifh kit edu

Willkommen am Institut für Hydromechanik (IfH)

Logos

 

Aktuelles

moat
MOAT project successful in large-scale Gauss call

The MOAT project ("micro-organisms and turbulence") has just been awarded a massive amount of computational resources at the Stuttgart super-computing center HLRS through the highly-competitive selection process coordinated by the Gauss Center for Supercomputing (GCS).
The simulations will consider the fate of bacteria in turbulent open channel flow over a realistic sediment bed, including a faithful representation of the dynamics of suspended particles and of additional scalar fields.
A link to the result of the 20th GCS call for large-scale projects can be found here. 
More information on the science behind the MOAT project can be found here.

gaus2
Direct Numerical Simulation of the Formation of Subaqueous Sediment Patterns: Evolution Beyond the Initial Formation

This project has investigated the problem of sediment transport and subaqueous pattern formation by means of high-fidelity direct numerical simulations which resolve all the relevant scales of the flow and the sediment bed. In order to realistically capture the phenomenon, sufficiently large computational domains with up to several billion grid nodes are adopted, while the sediment bed is represented by up to a million mobile spherical particles. The study provides a unique set of spatially and temporally resolved information on the flow field and the motion of individual particles which make up the sediment bed, providing novel insight into the different mechanisms involved in the processes of sediment pattern formation.

More
 
gaus3
Direct Numerical Simulation of Fully-Rough Open-Channel Flow Over Spherical Roughness Elements

Open channel flow can be considered as a convenient "laboratory" for investigating the physics of the flow in rivers. One open questions in this field is related to the influence of a rough boundary (i.e. the sediment bed) upon the hydraulic properties, which to date is still unsatisfactorily modelled by common engineering-type formulae. The present project aims to provide the basis for enhanced models by generating high-fidelity data of shallow flow over a bed roughened with spherical elements in the fully rough regime. In particular, the influence of the roughness Reynolds number and of the spatial roughness arrangement upon the turbulent channel flow structure is being studied.

More
Folgende BACHELOR- und MASTERARBEITEN sind derzeit bei uns ausgeschrieben:


MA - Laboratory investigation of flow and chemical behavior of woodchips to better understand performance of denitrifying bioreactors

MA - Flow through emergent and low-submergence vegetation patches

MA - Aufbau eines Messsystems zur Bestimmung der Fahrspur von Fahrradfahrern

MA - Bestimmung des Widerstandsbeiwerts von Radfahrern bei seitlicher Anströmung

Weitere Informationen